Photoperiodic and Genetic Control of Carbon Partitioning in Peas and Its Relationship to Apical Senescence 1
نویسنده
چکیده
Apical senescence but not flower initiation is delayed by short days (SD) compared to long days (LD) in pea plants (Pisum sativum L.) of genotype E Sn Hr. We recently reported that delay of senescence correlated with slower reproductive development, suggesting that fruits are weaker sinks for assimilates under delayed senescence conditions. Thus, we have examined assimilate partitioning in peas to determine if genotype and photoperiod regulate relative sink strength. Assimilate diversion by developing fruit has been implicated in senescence induction. A greater percentage of leaf-exported 14C was transported to fruits and a smaller percentage to the apical bud of G2 peas (genotype E S.4 Hr) in LD than in SD. Relatively more of the 14C delivered to the apical bud of G2 peas was transported to flower buds than to young leaves in LD as compared to SD. There was no striking photoperiodic difference in carbon partitioning in genetic lines without the Sn Hr allele combination. The Sn Hr allele combination and photoperiod may regulate the relative strength of reproductive and vegetative sinks. Photoperiodic differences in sink strength early in reproduction suggest that these genes regulate sink strength by affecting the physiology of the whole plant. High vegetative sink strength in SD may maintain assimilate supply to the apical bud, delaying senes-
منابع مشابه
Photoperiodic and genetic control of carbon partitioning in peas and its relationship to apical senescence.
Apical senescence but not flower initiation is delayed by short days (SD) compared to long days (LD) in pea plants (Pisum sativum L.) of genotype E Sn Hr. We recently reported that delay of senescence correlated with slower reproductive development, suggesting that fruits are weaker sinks for assimilates under delayed senescence conditions. Thus, we have examined assimilate partitioning in peas...
متن کاملEffect of photoperiod on polyamine metabolism in apical buds of g2 peas in relation to the induction of apical senescence.
Polyamine content and arginine decarboxylase activity of apical buds were measured to determine whether polyamines are required to prevent apical senescence in pea. Polyamines were assayed as dansyl derivatives which were separated by reverse phase high performance liquid chromatography and detected by fluorescence spectrophotometry. High polyamine concentrations were found in the vigorous apic...
متن کاملMolecular genetic control of leaf lifespan in plants - A review
Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...
متن کاملThe Control of Apical Bud Growth and Senescence by Auxin and Gibberellin in Genetic Lines of Peas.
Pea (Pisum sativum L.) lines G2 (dwarf) and NGB1769 (tall) (Sn Hr) produce flowers and fruit under long (LD) or short (SD) days, but senesce only under LD. Endogenous gibberellin (GA) levels were inversely correlated with photoperiod (over 9-18 h) and senescence: GA20 was 3-fold and GA1 was 10- to 11-fold higher in flowering SD G2 shoots, and the vegetative tissues within the SD apical bud cont...
متن کاملSSM-Wheat: a simulation model for wheat development,growth and yield
A robust crop model can assist in genetic improvement and cultural management of the crop. The objectives of this study were to describe a wheat (Triticum aestivum L.) model and to report results of its evaluation. The model simulates phenological development, leaf development and senescence, crop mass production and partitioning, plant nitrogen balance, yield formation and soil water and ...
متن کامل